Modeling annual production and carbon fluxes of a large managed temperate forest using forest inventories, satellite data and field measurements.

نویسندگان

  • Guerric Le Maire
  • Hendrik Davi
  • Kamel Soudani
  • Christophe François
  • Valérie Le Dantec
  • Eric Dufrêne
چکیده

We evaluated annual productivity and carbon fluxes over the Fontainebleau forest, a large heterogeneous forest region of 17,000 ha, in terms of species composition, canopy structure, stand age, soil type and water and mineral resources. The model is a physiological process-based forest ecosystem model coupled with an allocation model and a soil model. The simulations were done stand by stand, i.e., 2992 forest management units of simulation. Some input parameters that are spatially variable and to which the model is sensitive were calculated for each stand from forest inventory attributes, a network of 8800 soil pits, satellite data and field measurements. These parameters are: (1) vegetation attributes: species, age, height, maximal leaf area index of the year, aboveground biomass and foliar nitrogen content; and (2) soil attributes: available soil water capacity, soil depth and soil carbon content. Main outputs of the simulations are wood production and carbon fluxes on a daily to yearly basis. Results showed that the forest is a carbon sink, with a net ecosystem exchange of 371 g C m(-2) year(-1). Net primary productivity is estimated at 630 g C m(-2) year(-1) over the entire forest. Reasonably good agreement was found between simulated trunk relative growth rate (2.74%) and regional production estimated from the National Forest Inventory (IFN) (2.52%), as well as between simulated and measured annual wood production at the forest scale (about 71,000 and 68,000 m(3) year(-1), respectively). Results are discussed species by species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring

Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed t...

متن کامل

Potential of Landsat-8 spectral indices to estimate forest biomass

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...

متن کامل

Spatial patterns of forest characteristics in the western United States derived from inventories.

In the western United States, forest ecosystems are subject to a variety of forcing mechanisms that drive dynamics, including climate change, land-use/land-cover change, atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is crucial to develop assessments of forest properties to establish baselines, determine the extent of changes, and provide information to...

متن کامل

Carbon emissions from deforestation in the Brazilian Amazon Region

A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000–2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first...

متن کامل

Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2

[1] Insights into how terrestrial ecosystems affect the Earth’s response to changes in climate and rising atmospheric CO2 levels rely heavily on the predictions of terrestrial biosphere models (TBMs). These models contain detailed mechanistic representations of biological processes affecting terrestrial ecosystems; however, their ability to simultaneously predict field-based measurements of ter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2005